Nitric Oxide-Dependent Activation of CaMKII Increases Diastolic Sarcoplasmic Reticulum Calcium Release in Cardiac Myocytes in Response to Adrenergic Stimulation

نویسندگان

  • Jerry Curran
  • Lifei Tang
  • Steve R. Roof
  • Sathya Velmurugan
  • Ashley Millard
  • Stephen Shonts
  • Honglan Wang
  • Demetrio Santiago
  • Usama Ahmad
  • Matthew Perryman
  • Donald M. Bers
  • Peter J. Mohler
  • Mark T. Ziolo
  • Thomas R. Shannon
چکیده

Spontaneous calcium waves in cardiac myocytes are caused by diastolic sarcoplasmic reticulum release (SR Ca(2+) leak) through ryanodine receptors. Beta-adrenergic (β-AR) tone is known to increase this leak through the activation of Ca-calmodulin-dependent protein kinase (CaMKII) and the subsequent phosphorylation of the ryanodine receptor. When β-AR drive is chronic, as observed in heart failure, this CaMKII-dependent effect is exaggerated and becomes potentially arrhythmogenic. Recent evidence has indicated that CaMKII activation can be regulated by cellular oxidizing agents, such as reactive oxygen species. Here, we investigate how the cellular second messenger, nitric oxide, mediates CaMKII activity downstream of the adrenergic signaling cascade and promotes the generation of arrhythmogenic spontaneous Ca(2+) waves in intact cardiomyocytes. Both SCaWs and SR Ca(2+) leak were measured in intact rabbit and mouse ventricular myocytes loaded with the Ca-dependent fluorescent dye, fluo-4. CaMKII activity in vitro and immunoblotting for phosphorylated residues on CaMKII, nitric oxide synthase, and Akt were measured to confirm activity of these enzymes as part of the adrenergic cascade. We demonstrate that stimulation of the β-AR pathway by isoproterenol increased the CaMKII-dependent SR Ca(2+) leak. This increased leak was prevented by inhibition of nitric oxide synthase 1 but not nitric oxide synthase 3. In ventricular myocytes isolated from wild-type mice, isoproterenol stimulation also increased the CaMKII-dependent leak. Critically, in myocytes isolated from nitric oxide synthase 1 knock-out mice this effect is ablated. We show that isoproterenol stimulation leads to an increase in nitric oxide production, and nitric oxide alone is sufficient to activate CaMKII and increase SR Ca(2+) leak. Mechanistically, our data links Akt to nitric oxide synthase 1 activation downstream of β-AR stimulation. Collectively, this evidence supports the hypothesis that CaMKII is regulated by nitric oxide as part of the adrenergic cascade leading to arrhythmogenesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Calcium/calmodulin‐dependent kinase II and nitric oxide synthase 1‐dependent modulation of ryanodine receptors during β‐adrenergic stimulation is restricted to the dyadic cleft

KEY POINTS The dyadic cleft, where coupled ryanodine receptors (RyRs) reside, is thought to serve as a microdomain for local signalling, as supported by distinct modulation of coupled RyRs dependent on Ca2+ /calmodulin-dependent kinase II (CaMKII) activation during high-frequency stimulation. Sympathetic stimulation through β-adrenergic receptors activates an integrated signalling cascade, enha...

متن کامل

NO-dependent CaMKII activation during β-adrenergic stimulation of cardiac muscle.

AIMS During β-adrenergic receptor (β-AR) stimulation, phosphorylation of cardiomyocyte ryanodine receptors by protein kinases may contribute to an increased diastolic Ca(2+) spark frequency. Regardless of prompt activation of protein kinase A during β-AR stimulation, this appears to rely more on activation of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII), by a not yet identified signal...

متن کامل

Expression of Inducible Nitric Oxide Synthase Depresses -Adrenergic–Stimulated Calcium Release From the Sarcoplasmic Reticulum in Intact Ventricular Myocytes

Calcium Release From the Sarcoplasmic Reticulum in Intact Ventricular Myocytes Stimulated − -Adrenergic β Expression of Inducible Nitric Oxide Synthase Depresses Print ISSN: 0009-7322. Online ISSN: 1524-4539 Copyright © 2001 American Heart Association, Inc. All rights reserved. is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231 Circulation doi: 10.1161/hc49...

متن کامل

NO generation by b-AR stimulation to activate CaMKII

Ca2+–Calmodulin (CaM) kinase II (CaMKII) activation depends predominantly on modifications of amino acids within the regulatory domain on this multidomain kinase. A number of mechanisms of activation have been described since the original mode of activation, via Ca2+–CaM binding and phosphorylation of a threonine residue in the regulatory domain of CaMKII, was demonstrated. Gutierrez et al. pro...

متن کامل

Nitric oxide regulation of myocardial contractility and calcium cycling: independent impact of neuronal and endothelial nitric oxide synthases.

The mechanisms by which nitric oxide (NO) influences myocardial Ca2+ cycling remain controversial. Because NO synthases (NOS) have specific spatial localization in cardiac myocytes, we hypothesized that neuronal NOS (NOS1) found in cardiac sarcoplasmic reticulum (SR) preferentially regulates SR Ca2+ release and reuptake resulting in potentiation of the cardiac force-frequency response (FFR). Tr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014